
CodeArts Check

Best Practices

Issue 01

Date 2025-08-01

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Checking Code from Git with Preset Rules... 1

2 Checking Code from CodeArts Repo with Custom Rules...5

3 Checking Code with Custom Executors..12

4 Executing a Task Securely... 18

5 Huawei E2E DevOps Practice: Checking Code..21

CodeArts Check
Best Practices Contents

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. iii

1 Checking Code from Git with Preset
Rules

Scenario
Check Java code from Git to protect quality.

Prerequisites
● You have obtained permissions of CodeArts Check.
● There is Java code in the Git repository.

Procedure

Table 1-1 Steps

No. Step Description

1 Creating a
Project

Create a project.

2 Creating a Git
Service
Endpoint

Use a service endpoint to connect to a third-party
repository.

3 Creating a
Task to Check
Code from Git

Create a task.

4 Executing the
Task

Execute a task.

5 Viewing
Check Results

View check results.

CodeArts Check
Best Practices 1 Checking Code from Git with Preset Rules

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 1

Creating a Project

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service.

Step 4 Click Create Project, and select the Scrum template. Set the project name to
Scrum01 and retain the default values for other parameters.

Step 5 Click OK to access the project.

----End

Creating a Git Service Endpoint
A service endpoint is an extension to CodeArts and supports connection to third-
party repositories.

With a service endpoint, CodeArts Check supports repositories either of CodeArts
Repo and third-parties.

Step 1 Enter a task through a project. In the navigation pane, choose Settings > General
> Service Endpoints.

Step 2 Click Create Endpoint and choose Git repository from the drop-down list.

Step 3 Configure the following information and click Confirm.

Table 1-2 Creating a Git Service Endpoint

Parameter Description

Service
Endpoint
Name

Enter a maximum of 256 characters, including letters, digits,
hyphens (-), underscores (_), periods (.), and spaces. For
example, Endpoint01.

Git
Repository
URL

Enter the HTTPS address of the Git repository to connect.

Username Enter the username of the Git repository to connect (max. 300
characters).

Password or
Access
Token

Enter the password of the Git repository to connect (max. 300
characters).

----End

Creating a Task to Check Code from Git

Step 1 In the navigation pane, choose Code > Check.

CodeArts Check
Best Practices 1 Checking Code from Git with Preset Rules

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 2

https://console-intl.huaweicloud.com/

Step 2 Click Create Task. Set parameters by referring to the following table.

Table 1-3 Task parameters

Para
meter

Description

Projec
t

Project that the task belongs to. Retain the default value (the Scrum01
project created in Creating a Project).

Code
Sourc
e

Select Git.

Name Enter a task name, for example, CheckTask01.

Endpo
int

Select the Endpoint01 service endpoint created in Creating a Git
Service Endpoint.

Reposi
tory

Retain the default value.

Branc
h

Retain the default value master.

Langu
age

Select the code language to be checked, for example, Java.

Step 3 Click Create Task.

----End

Executing the Task

Step 1 In the Tasks page, click to execute the task.

Step 2 Wait until the task is complete as prompted.

----End

Viewing Check Results

Step 1 In the Tasks page, search for the CheckTask01 task created in Creating a Task to
Check Code from Git.

Step 2 Click the task name to view the check details, including overview, issues, metrics,
logs, and settings.

So far, we have completed a basic common check process for Git code sources.

----End

Related Operations
● For more configurations, see Configuring a Task.

CodeArts Check
Best Practices 1 Checking Code from Git with Preset Rules

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/usermanual-codecheck/codecheck_01_0001.html

● For general issues about executing tasks, see General Issues.

CodeArts Check
Best Practices 1 Checking Code from Git with Preset Rules

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/codecheck_faq/codecheck_02_0002.html

2 Checking Code from CodeArts Repo with
Custom Rules

Scenario

As the code and development framework expand, the static analysis needs to
cover additional scenarios. However, the following questions have also arisen:

● The traditional static analysis engines cannot offer real-time scenario-based
code checks by relying solely on general rules.

● Users may not be familiar with all scenarios covered by general rules, making
finding applicable rules for a newly developed service time-consuming.

● It is challenging to develop comprehensive and effective rules to fit different
users and services.

This section describes how to use custom rules to check code.

Prerequisites
● You have obtained permissions of CodeArts Check.

● There is Java code in the Git repository.

Procedure

Table 2-1 Steps

No. Step Description

1 Creating a
Project

Create a project.

2 Creating a
Code
Repository in
CodeArts
Repo

Create a code repository.

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/usermanual-codecheck/codeartscheck_01_9000.html

No. Step Description

3 Creating a
Rule File

Create a rule file to be uploaded when a custom rule is
created.

4 Creating a
Custom Rule

Create a custom rule.

5 Creating a
Custom Rule
Set

Create a custom rule set to use custom rules.

6 Creating a
Task

Create a task that uses custom rules.

7 Checking
Code by
Using a
Custom Rule
Set

Configure the task with the custom rule set.

8 Viewing
Check Results

View the check results to check whether the rule takes
effect.

Creating a Project

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service.

Step 4 Click Create Project, and select the Scrum template. Set the project name to
Scrum01 and retain the default values for other parameters.

Step 5 Click OK to access the project.

----End

Creating a Code Repository in CodeArts Repo

Step 1 In the navigation pane, choose Code > Repo.

Step 2 On the CodeArts Repo homepage, click Create Repository.

Step 3 On the displayed page, select Template.

Step 4 Click Next and select the Java Maven Demo template.

Step 5 Click Next. Set the repository name to Repo01 and deselect Automatically create
check task. Retain the default values for other parameters.

Step 6 Click OK.

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 6

https://console-intl.huaweicloud.com/

Step 7 Modify the code information in the HelloWorld.java file in the com/huawei
directory as follows:
package com.huawei;
/**
 * Generate a unique number
 *
 */
public class HelloWorld
{
//Used to print logs
 public void debugLog(List<String> msg) {
 for (String msg0 : msg) {
 System.out.println("DEBUG:"+ msg0);
 }
}
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

----End

Creating a Rule File

Step 1 Download and install the Visual Studio Code IDE editor (version 1.67.0 or later).

Step 2 On the IDE editor page, click on the left and search for Huawei Cloud
CodeNavi in the displayed window.

Step 3 Click Install to install this plug-in.

Step 4 Create a .kirin file in the editor workspace, for example, CheckDebugCode.kirin.
The file content is as follows:
functionDeclaration fd1 where
 and(
 fd1.hasBody,
 fd1.name startWith "debug",
 fd1.parameters.size() == 1,
 fd1.parameters[0].type.name == "java.util.List"
);

Step 5 Right-click the rule file and choose CodeNavi > Format to verify the syntax.

Step 6 Right-click the rule file and choose CodeNavi > Scan.

Step 7 In the displayed dialog box, select the file or directory to be checked and click
Scan.

Step 8 After the scanning is complete, click the defects in the lower left corner of the
page to display the specific code snippet. In addition, a rule file in .json format is
generated in the OutputReport file in the same directory.

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 7

https://marketplace.visualstudio.com/search?term=HUAWEI&target=VSCode&category=Programming%20Languages&sortBy=Relevance

----End

Creating a Custom Rule

Step 1 In the navigation pane, choose Code > Check.

Step 2 Click the Rules tab.

Step 3 Click Create Rule. Set parameters by referring to Table 2-2.

Table 2-2 Rule parameters

Parame
ter

Description

Rule
Name

Custom rule name. It can be customized. For example,
CheckDebugCode.

Tool
Rule
Name

Rule source code file (by default).

Tool Check tool used by a custom rule. Currently, only SecBrella is
supported.

Langua
ge

Language checked by a custom rule. Currently, Java and ArkTS are
supported.

Source
Code

Rule source code file. Upload the file generated in Creating a Rule
File.

Severity Severity of a code issue detected by a rule. The value can be Critical,
Major, Minor, or Suggestion. Set this parameter to Suggestion.

Tag (Optional) Rule tag for different scenarios.
NOTE

Use commas (,) to separate multiple tags.

Descript
ion

Rule description. The content contains code in Markdown. Max.
10,000 characters. For example, check whether debugging code exists.

Complia
nt
Exampl
e

(Optional) Compliant code example. The content contains code in
Markdown. Max. 10,000 characters.

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 8

Parame
ter

Description

Nonco
mpliant
Exampl
e

(Optional) Noncompliant code example. The content contains code in
Markdown. Max. 10,000 characters.

Fix
Suggest
ions

(Optional) Issue fixing suggestions. The content contains code in
Markdown. Max. 10,000 characters.

Step 4 Click OK.

----End

Creating a Custom Rule Set

Step 1 On the task list, click the Rule Sets tab.

Step 2 Click Create Rule Set. In the displayed window, set Rule Set to RuleList and
Language to JAVA.

Step 3 Click Confirm.

Step 4 Select the rule created in Creating a Custom Rule and click Save in the upper
right corner.

----End

Creating a Task

Step 1 On the task list page, click Create Task and set parameters by referring to the
following table.

Table 2-3 Task parameters

Para
meter

Description

Projec
t

Retain the default value (the Scrum01 project created in Creating a
Project).

Code
Sourc
e

Source of code. Select Repo.

Name Enter a task name, for example, CheckTask01.

Reposi
tory

Select the Repo01 code repository created in Creating a Code
Repository in CodeArts Repo.

Branc
h

Retain the default value master.

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 9

Para
meter

Description

Langu
age

Select Java.

Step 2 Click Confirm.

----End

Checking Code by Using a Custom Rule Set

Step 1 In the Tasks page, click the task name.

Step 2 Click Settings.

Step 3 Click Rule Sets. In the right pane, click to select the RuleList rule set created
in Creating a Custom Rule Set.

Step 4 Click Configuration, set Compiler Tools Options to , and set Build Tool to
maven. Retain the default values for other parameters and click Confirm.

Figure 2-1 Configuration

Step 5 Click Start Check in the upper right corner.

----End

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 10

Viewing Check Results

Step 1 In the Tasks page, search for the CheckTask01 task created in Creating a Task.

Step 2 Click the task name to view the check details, including overview, issues, metrics,
logs, and settings.

----End

Related Operations
● For more configurations, see Configuring a Task.
● For general issues about executing tasks, see General Issues.

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 11

https://support.huaweicloud.com/intl/en-us/usermanual-codecheck/codecheck_01_0001.html
https://support.huaweicloud.com/intl/en-us/codecheck_faq/codecheck_02_0002.html

3 Checking Code with Custom Executors

Scenario

You can register your own executors with CodeArts Check to schedule and execute
check tasks. This section describes how to use a custom executor to check code
from CodeArts Repo.

This practice depends on CodeArts Repo to store the code.

Constraints
● To use your custom executors, contact technical support.
● You have permissions for CodeArts Repo.

Resource and Cost Planning

In this practice, you need to purchase an ECS as a custom executor. For details
about the price of an ECS, see Price Calculator.

Prerequisites
● You have purchased an ECS.

NO TE

Only EulerOS 2.5 is supported for custom executors.

● You have installed Git-LFS on the custom executor. If not, install it by referring
to the following command-based example.
Run the following commands on the executor:
Download
wget -O git-lfs.tar.gz https://github.com/git-lfs/git-lfs/releases/download/v3.4.1/git-lfs-linux-amd64-
v3.4.1.tar.gz
Decompress the package
tar -zxvf git-lfs.tar.gz
Open the directory generated after the decompression
cd git-lfs-3.4.1
Run the installation script
sh install.sh
Verify
git lfs version

● You have attached an EVS disk.

CodeArts Check
Best Practices 3 Checking Code with Custom Executors

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 12

https://support.huaweicloud.com/intl/en-us/codeartsrepo/index.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0087.html
https://www.huaweicloud.com/intl/en-us/pricing/calculator.html#/ecs
https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_7002.html
https://support.huaweicloud.com/intl/en-us/usermanual-evs/evs_01_0107.html

Procedure

Table 3-1 Steps

Step Description

Creating a Project Create a project.

Creating an Agent
Pool

Create a pool of custom executors (agent pool).

Creating a
CodeArts Repo
Repository

Create a repository to store code.

Configuring and
Executing a Check
Task

Configure the task to use the custom executor.

Viewing Check
Results

View the check logs to verify the executor used for the
task.

Creating a Project

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
Check from the service list.

Step 3 Click Go to CodeArts Check to go to the CodeArts Check homepage.

Step 4 In the navigation pane, choose Homepage. Click Create > Create Project, and
select the Scrum template.

Step 5 Enter the project name, for example, check-bestpractice. Retain the other
parameters as default.

Step 6 Click OK to access the project.

----End

Creating an Agent Pool

Step 1 On the navigation bar, click the username and choose All Account
Settings.

Step 2 Choose Agent Management > Agent Pool.

Step 3 Click Create Pool. In the displayed dialog box, set parameters according to Table
3-2 and click Save.

CodeArts Check
Best Practices 3 Checking Code with Custom Executors

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 13

https://console-intl.huaweicloud.com/

Table 3-2 Agent pool configuration

Parameter Description

Pool Name Assign a custom name to the pool, for example,
custom_pool.

Pool Type Select LINUX_DOCKER. When a task is initiated, a Linux
Docker container will be started to run the task.

Description (Optional) Enter additional information to describe the
pool.

This pool can be
used by all users of
the current
account.

(Optional) Selecting this option allows all users within the
current account to use the pool.

Step 4 Click the name of the new pool (custom_pool is used in this practice). The pool
configuration page is displayed.

Step 5 Click Create Agent. In the displayed dialog box, configure the agent according to
Table 3-3 and leave the other parameters as default.

Table 3-3 Parameters for creating an agent

Paramet
er

Description

Install
Docker

Selecting this option mandates Docker installation.

Install
Docker
automati
cally

Toggling on the switch will automatically install Docker.

AK Obtain an AK.

SK Obtain an SK.

Agent
Name

Assign a custom name to the agent, for example,
agent_test_custom.

Agent
Workspac
e

Enter an agent workspace that follows the standard Linux directory
structure. For example, /opt/agent_test_custom.

Step 6 Select the check box to confirm that you have read and accept the agreements.
Then click Generate Command and Copy Command. Click Close.

CodeArts Check
Best Practices 3 Checking Code with Custom Executors

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 14

https://support.huaweicloud.com/intl/en-us/devg-apisign/api-sign-provide-aksk.html
https://support.huaweicloud.com/intl/en-us/devg-apisign/api-sign-provide-aksk.html

Figure 3-1 Creating an agent

Step 7 Go to the ECS list page, find the row of the ECS purchased to meet prerequisites,
click Remote Login, and run the command copied in Step 6, as instructed by Step
3.

Step 8 On the agent list page, click Refresh List. After the information is automatically
synchronized in the background, a new item will be added to the list. The agent
alias is agent_test_custom-mwlye1NlLG.

----End

Creating a CodeArts Repo Repository

Step 1 In the navigation pane, choose Code > Repo to go to the CodeArts Repo page of
the check-bestpractice project.

Step 2 Click Create Repository and select CR.

Step 3 On the displayed page, select Template and click Next.

Step 4 On the template selection page, select the Java Maven Demo template and click
Next.

Step 5 On the displayed page, set Repository Name to custom_repo, select
Automatically create Check task, and leave the other parameters as default.
Click OK.

Figure 3-2 shows the directory that stores files of the code repository.

CodeArts Check
Best Practices 3 Checking Code with Custom Executors

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 15

Figure 3-2 Directory that stores files of the code repository

----End

Configuring and Executing a Check Task

Step 1 In the navigation pane, choose Code > Check. The task is displayed on the task
list page, because you have selected Automatically create Check task when
creating a cloud repository in CodeArts Repo.

Step 2 Click the task name. On the displayed page, choose Settings > Custom
Environment.

Step 3 In the Execution Host area, select Self-Hosted.

Step 4 Expand the drop-down list and select custom_pool you created in Creating an
Agent Pool.

Step 5 Click Save and click Start Check.

----End

Viewing Check Results

Click the task name. On the displayed task details page, click Logs. If the logs
contain "Find available executor node:agent_test_custom-mwlye1NlLG," the task is
executed by a custom executor. agent_test_custom-mwlye1NlLG is the agent
alias mentioned in Step 8.

CodeArts Check
Best Practices 3 Checking Code with Custom Executors

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 16

Related Operations
● For more configurations, see Configuring a Task.
● For general issues about executing tasks, see General Issues.

CodeArts Check
Best Practices 3 Checking Code with Custom Executors

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/usermanual-codecheck/codecheck_01_0001.html
https://support.huaweicloud.com/intl/en-us/codecheck_faq/codecheck_02_0002.html

4 Executing a Task Securely

Scenario
The enhanced package offers a robust security check feature that thoroughly
detects code risks and vulnerabilities. It also covers unique risk scenarios not
available in the edition packages, for example, value errors, encryption issues, and
data verification issues. Moreover, it strengthens vulnerability analyses for
detection items (such as cross-function check, cross-file check, taint analysis,
semantic analysis).

Resource and Cost Planning
Purchase the CodeArts Check enhanced package by referring to Purchasing a
Value-Added Feature. For details about the price, see Price Calculator.

Procedure

Table 4-1 Procedure

Step Description

Creating a
Project

Create a project.

Creating a
CodeArts Repo
Repository

Create a code repository.

Configuring a
Rule Set to
Execute a Task

Configure a rule set with the security enhanced package to a
task.

Viewing Check
Results

View the check results to check whether the rule takes effect.

CodeArts Check
Best Practices 4 Executing a Task Securely

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 18

https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0002.html#section3
https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0002.html#section3
https://www.huaweicloud.com/intl/en-us/pricing/calculator.html?tab=detail#/devcloud

Creating a Project

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
Check from the service list.

Step 3 Click Go to CodeArts Check to go to the CodeArts Check homepage.

Step 4 In the navigation pane, choose Homepage. Click Create > Create Project, and
select the Scrum template.

Step 5 Enter the project name, for example, check-bestpractice. Retain the other
parameters as default.

Step 6 Click OK to access the project.

----End

Creating a CodeArts Repo Repository

Step 1 In the navigation pane, choose Code > Repo to go to the CodeArts Repo page of
the check-bestpractice project.

Step 2 Click Create Repository.

Step 3 On the displayed page, select Template and click Next.

Step 4 On the template selection page, select the Java Maven Demo template and click
Next.

Step 5 Set Repository Name to Repo01, select Automatically create check task, and
retain the other parameters as default. Click OK.

----End

Configuring a Rule Set to Execute a Task

Step 1 The task is displayed on the task list page, because you have selected
Automatically create Check task when creating a cloud repository in CodeArts
Repo. On the Tasks page, click the task name.

Step 2 Click Settings.

Step 3 Click Rule Sets and click in the upper right corner of Huawei Java Enhanced
Coding Standard Rule Set.

Step 4 Click Configuration, set Compiler Tools Options to , and set Build Tool to
maven. Retain the default values for other parameters and click Confirm.

CodeArts Check
Best Practices 4 Executing a Task Securely

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 19

https://console-intl.huaweicloud.com/

Figure 4-1 Configuration

Step 5 Click Start Check in the upper right corner.

----End

Viewing Check Results
If issues checked by Huawei Java Enhanced Programming Rule Set are
displayed, this rule set is used for the task.

Related Operations
For more rule set configurations, see Configuring a Rule Set.

CodeArts Check
Best Practices 4 Executing a Task Securely

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 20

https://support.huaweicloud.com/intl/en-us/usermanual-codecheck/codecheck_ug_0001.html

5 Huawei E2E DevOps Practice: Checking
Code

This section takes a DevOps full-process sample project as an example to describe
how to configure a check task in a project.

Preset Tasks

The sample project presets four code check tasks.

Table 5-1 Preset tasks

Preset Task Description

phoenix-
codecheck-worker

Checks the Worker function code.

phoenix-
codecheck-result

Checks the Result function code.

phoenix-
codecheck-vote

Checks the Vote function code.

phoenix-sample-
javas

Checks the JavaScript code of the entire code repository.

This section uses the phoenix-codecheck-worker task as an example.

Configuring and Executing a Task

Developers can slightly adjust preset tasks in the sample project to make the
check more comprehensive.

This practice uses the Python check rule set as an example.

Step 1 Go to the Phoenix Mall project, and choose Code > Check. The preset four tasks
are displayed.

CodeArts Check
Best Practices 5 Huawei E2E DevOps Practice: Checking Code

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 21

Step 2 Find the phoenix-codecheck-worker task in the list, click in the Operation
column, and choose Settings.

Step 3 In the navigation pane, choose Rule Sets. The default language of each rule set is
Java.

Step 4 Add the Python rule set.

1. Click next to Languages Included to refresh the language list.

2. Enable Python by setting the switch to the status.

The rule set is configured.

Step 5 Click Start Check to start the task.

If is displayed, the task is successfully executed.

If the task fails, rectify the fault by referring to CodeArts Check FAQs.

----End

Viewing the Code Check Result
CodeArts Check collects check results and provides fix suggestions for detected
issues. Optimize the project code based on the suggestions.

Step 1 On the task details page, click the Overview tab to view the result statistics.

Step 2 Click the Issues tab to view the issue list.

Click Help in the question box to view fix suggestions. You can find the
corresponding file and code location in the code repository, and optimize the code
based on the fix suggestions.

Figure 5-1 Viewing help information

----End

CodeArts Check
Best Practices 5 Huawei E2E DevOps Practice: Checking Code

Issue 01 (2025-08-01) Copyright © Huawei Technologies Co., Ltd. 22

https://support.huaweicloud.com/intl/en-us/codecheck_faq/codecheck_02_0002.html

	Contents
	1 Checking Code from Git with Preset Rules
	2 Checking Code from CodeArts Repo with Custom Rules
	3 Checking Code with Custom Executors
	4 Executing a Task Securely
	5 Huawei E2E DevOps Practice: Checking Code

